
Learning in Planning with Temporally Extended Goals
and Uncontrollable Events

André A. Ciré1 and Adi Botea2

Abstract. Recent contributions to advancing planning from the

classical model to more realistic problems include using temporal

logic such as LTL to express desired properties of a solution plan.

This paper introduces a planning model that combines temporally ex-

tended goals and uncontrollable events. The planning task is to reach

a state such that all event sequences generated from that state sat-

isfy the problem’s temporally extended goal. A real-life application

that motivates this work is to use planning to configure a system in

such a way that its subsequent, non-deterministic internal evolution

(nominal behavior) is guaranteed to satisfy a condition expressed in

temporal logic.

A solving architecture is presented that combines planning, model

checking and learning. An online learning process incrementally dis-

covers information about the problem instance at hand. The learned

information is useful both to guide the search in planning and to

safely avoid unnecessary calls to the model checking module. A de-

tailed experimental analysis of the approach presented in this paper

is included. The new method for online learning is shown to greatly

improve the system performance.

1 Introduction

Recent years have seen an increased interest in advancing planning

from the classical model to extensions such as using temporal logic to

express desired features of a correct plan. Search in a classical plan-

ning problem can be guided with control rules expressed in temporal

logic [1]. The international planning competition IPC-5 [6] has in-

troduced hard and soft constraints, expressed in temporal logic, that

finite plans should satisfy. Computing cyclic solutions to problems

with temporally extended goals is presented in [10].

Previous contributions to planning such as the above ones apply

temporal logic reasoning along a (candidate) solution plan that is ei-

ther a finite or a cyclic sequence of actions. In contrast, this paper

addresses a problem where temporal logic is applied to the future be-

havior of a system after a goal state is reached. Specifically, the tem-

poral goal of a problem must be satisfied by all sequences of events

that originate in a goal state. Events are transitions in the problem

state space that are not under the control of the planning agent.

A real-life application that motivates this research is automated

configuration of a composite system such as a power grid or a net-

work of water pipes. A composite system is a collection of interacting

components. Assume it has a nominal behavior, a non-deterministic

evolution in the state space where all transitions are uncontrollable

events. Even though planning cannot control the events directly, it

can impact the nominal behavior by configuring elements of the sys-

1 Institute of Computing, University of Campinas, Brazil
2 NICTA and Australian National University, Canberra, ACT

tem structure such as the connections between components. Config-

uring the system in a specific way doesn’t necessarily imply that the

subsequent nominal behaviour is fully determined. Generally, many

event trajectories can originate from a given configuration. The plan-

ning task is to configure the system in such a way that its subsequent

nominal behavior satisfies the goal condition on every possible event

sequence. The configuration step is useful in a number of scenarios

such as the initial configuration of a system, a reconfiguration to re-

cover from a failure, a reconfiguration to grow or reduce the size of

a system, and a reconfiguration to adapt to a new goal condition. As

soon as a solution is found, the planning agent interferes no longer

with the system unless a reconfiguration process becomes necessary

at some point in the future.

Contributions. This paper introduces a new planning model that

combines temporally extended goals and uncontrollable events. A

solving approach is presented that incrementally learns new informa-

tion about a problem instance and uses it to improve the performance.

The architecture contains a planning component, a model checking

component and an online learning component. Planning explores the

problem space where transitions are actions and enumerates candi-

date goal states. A model checking round tests if all event sequences

that originate in a candidate goal state satisfy the temporally extended

goal. If the test succeeds, a solution has been found. Otherwise, at

least one event sequence exists for which the goal formula does not

hold. The learning step analyzes such event sequences. New infor-

mation is extracted, which will be used to both guide the planning

and avoid unnecessary model checking rounds.

The performance of a system that implements the ideas presented

in this paper is analyzed empirically in detail. The newmethod for in-

crementally learning information about a problem instance is shown

to greatly improve both the planning effort and the total number of

model checking rounds.

2 Related Work

Planning systems such as TLPLAN [1] and TALPLANNER [13] are

capable of handling a large problem space by using search con-

trol rules formulated in temporal logic. MIPS [16], SGPLAN [9]

and HPLAN-P [2] are examples of systems that can handle hard

and soft constraints (preferences) related to a planning goal. This

research direction was mainly encouraged by a track added to the

2006 International Planning Competition (IPC-5), in conjunction

with PDDL3 [6]. A method able to generate cyclic plans that satisfy

a temporally extended goal can be found in [10]. In path planning,

temporal logic can encode constraints that a trajectory computed for

a mobile unit (e.g., robot) should satisfy [5]. As in previous work

such as [7, 10, 16], we convert LTL formulas into Büchi automata.

Two major features that distinguish our work from all contributions

mentioned earlier are: (1) our system is capable of learning from tra-

jectories where an extended goal does not hold; and (2) we apply

our ideas to a new planning problem, where a deterministic planning

component is followed by a non-deterministic evolution generated

with uncontrollable events. In particular, we reason about LTL goals

in the presence of events, whereas the IPC-5 domains with extended

goals and preferences are deterministic.

In reactive planning, actions are executed to respond to event oc-

currences. Reactive planning in problems with extended goals ex-

pressed in Metric Temporal Logic (MTL) is the topic of [3, 4]. There

is an important distinction between the problem that we address and

fields such as reactive planning and controller synthesis. In the latter

cases no goal state is defined, whereas we need to reach a goal state

where the planning (configuration) is completed and the subsequent

system evolution (nominal behaviour) respects the temporal goal.

Generating a control strategy consistent with an LTL formula in a

non-deterministic environment is the topic in [12]. The value of this

contribution seems to be more theoretical. It provides a translation

of the original problem into an LTL game but indicates no heuristics

or other enhancements that will be necessary to scale up the perfor-

mance of a solver. It reports neither experiments nor an actual imple-

mentation of the theoretical ideas.

A high-level theme that our learning approach shares with expla-

nation based learning (EBL) is learning from counter examples. Our

work differs significantly from previous work on EBL in the plan-

ning problem addressed and in the ways that new information is ex-

tracted and subsequently used. E.g., the topic in [11] is learning from

Graphplan dead-ends in classical planning whilst we focus on learn-

ing from bad event sequences in planning with temporal goals and

uncontrollable events. Model-based self-configuration, a problem re-

lated to our work, is addressed in [17]. That work does not consider

temporally extended goals. It can be seen as a form of EBL, since

it attempts to make a search more informed as more conditions con-

flicting with goal states are discovered.

3 Problem Definition and Background

The planning model addressed in this work is a structure

〈S, s0, ϕ, γ, A, E〉 with S a finite state space, s0 ∈ S an initial state,
and ϕ a temporal logic formula that describes the goal. The func-
tion γ : S × (A ∪ E) → S models deterministic transitions in the
state space. The transitions are partitioned into a set of actions A
(i.e., transitions under the control of the planner), and a set of uncon-

trollable events E that define the nominal behavior of a system. The
search space that has the initial problem state as a root node and uses

only actions as transitions is called the problem planning space. The

space that is rooted in a given state s and uses only events for tran-
sitions is called the event space of state s. The state space associated
with a problem is defined using a fixed collection of boolean vari-

ables called atoms. Each state is a complete assignment to the atoms

defined for that problem. Equivalently, a state s can be defined as the
set of all atoms that are true in s (closed world assumption).
Following the STRIPS representation, each action (event) a has a

set of preconditions pre(a), a set of positive effects add(a) and a set
of negative effects del(a). An action (or event) a is applicable in a
state s if s |= pre(a). In such a case, γ(s, a) = (s\del(a))∪add(a).
Otherwise, γ(a, s) is undefined. A sequence of actions (events)
a1, a2, . . . , ak, is applicable in a state s if a1 is applicable in s,
a2 is applicable in γ(s, a1) and so on. For a sequence of actions

(events) π = a1, . . . , ak that is applicable in a state, the precondi-

tion of the entire sequence pre(π) is the union of all atoms p such
that (∃i ∈ {1 . . . k}) : (p ∈ pre(ai) ∧ (∀j < i)p /∈ add(aj)).
The planning task is to find a finite sequence of actions that can be

applied in s0 and that reaches a goal state. A state s ∈ S is a goal if
every event sequence applicable in s satisfies the temporal goal ϕ. A
sequence that does not satisfy ϕ is called a bad event sequence.

4 Solving Approach

The architecture outlined in Algorithm 1 contains three main mod-

ules. Planning explores the planning space and enumerates candidate

goal states. Model checking explores the event space of a candidate

goal state s to check if it satisfies the temporally extended goal of
the problem ϕ. If the test returns a positive answer, a solution has
been found. Otherwise, the online learning component attempts to

extract a sufficient condition that explains the negative result of the

most recent model checking round.

The system incrementally learns information about a problem in-

stance that is used to speed up the solving process. The learned in-

formation I is represented as an atemporal boolean formula. A state
s with the property s |= I is guaranteed not to satisfy the goal for-
mula ϕ. The boolean formula I is used in two parts of the algorithm,
each with a great contribution to the system performance. Firstly,

no model checking rounds need to be performed in states s with
s |= I . Secondly, ¬I can be used as a reachability goal in the plan-
ning component, allowing the computation of relaxed plans that steer

the search away from states that are guaranteed not to be goals. As

a problem definition contains no explicit reachability goals, no other

information besides¬I is used as a goal when building relaxed plans.
Standard algorithms that compute relaxed plans such as the one

implemented in the FF planning system [8] work only with con-

junctive reachability goals. As in Rintanen’s work [15], FF’s method

is extended to handle goals such as ¬I , which can be an arbitrary
boolean formula. In general, a relaxed plan could be used to compute

a heuristic distance from a current state to a goal state, and to parti-

tion the successors of a node into helpful nodes (i.e., nodes obtained

from applicable actions that are also part of the parent’s relaxed plan)

and rescue nodes (all other valid successors). In this paper, two open

queues are used, one for helpful and another for rescue nodes. A res-

cue node is expanded only when the helpful open queue is empty.

No heuristic values are associated with nodes. The reason is that, in

this problem, the reachability goal ¬I varies in time. Nodes evalu-
ated early might have better heuristic values just because these were

computed when the reachability goal was more relaxed.

When ¬I is used as a reachability goal in planning, the lines 6
and 7 in Algorithm 1 are redundant, since sg |= ¬I holds for every
candidate goal state sg . The lines are added to the pseudocode to

emphasize more clearly that model checking is triggered only for a

small fraction of the states visited in planning.

The next discussion assumes that Linear Temporal Logic (LTL)

goals are used. Model checking is implemented as a breadth-first

search in order to discover bad event sequences of minimal length.

Shorter bad event sequences can allow to learn information that has

fewer conjunctive conditions and hence is more generally applica-

ble. See details about learning later in this section. For the sake of

clarity, assume that each application of an event in model checking

search is performed together with both a normal (usual) progression

of ϕ and a progression in the Büchi automaton corresponding to ϕ.
Büchi progression is a standard approach also adopted, for example

in [10]. Other model checking methods (e.g., SAT based [14]) can

Algorithm 1 Architecture overview.

1: I ← false {initialize learned info}
2: while true do

3: (sg, π)← SearchForNextCandidateGoalState() {planning; π
is the action sequence from s0 to sg}

4: if no state sg is found then

5: return no solution

6: if sg |= I then
7: continue {no need for a costly model checking round}
8: ModelChecking(sg) {run a model checking round}
9: if model checking succeeds then

10: return π
11: else

12: I ← I ∨ ExtractInfo() {learning}

be used but the actual choice is not a major point of this research.

As explained in this section and demonstrated empirically in the next

section, we improve the model checking component of the algorithm

by reducing dramatically the total number of model checking rounds,

not the effort spent in one individual round.

In the model checking component, the event sequences that orig-

inate in a candidate goal state sg are split into four categories, one

corresponding to paths that satisfy ϕ and three corresponding to bad
event sequences. Bad event sequences are: L-paths, sequences that

end with a leaf node (i.e., a node where no events can be applied)

before the normal progression reduces ϕ to either true or false; F-
paths, sequences along which the normal progression reduces ϕ to
false; and C-paths, where a cycle is created and ϕ is never satisfied.
As soon as one bad event sequence is discovered, the correspond-

ing round of model checking returns. If desired, the procedure could

attempt to discover several bad event sequences, allowing to learn

more information from one round.

The rest of this section focuses on the learning method. This is

triggered each time when model checking has discovered an event

sequence πe that is either an F-path or a C-path. No information is

extracted from L-paths. Information extracted from an L-path might

be too specific to sg , since it would have to explain why none out of

potentially many events is applicable in the leaf node.

The information extraction aims at detecting a boolean formula c
such that sg |= c and c is sufficient to explain the failure of ϕ along
the sequence πe. More specifically, c should imply both the following
conditions: (1) πe is applicable in sg; and (2) ϕ does not hold along
the sequence πe.

As indicated in Algorithm 2, the formula c is initialized to pre(πe)
to ensure that c implies condition (1). To imply condition (2), c is
extended with zero or more conjunctive literals l. It is desirable to
minimize the number of added literals, as a smaller formula c is more
generally applicable and thus more model checking rounds could be

avoided in the future.

To compute a set of literals to be added to c, a variation of pro-
gression called event-specific progression is introduced. Consider a

state si obtained after applying the first i ≥ 1 steps of πe. The event-

specific progression to si from the previous step is equivalent to the

normal progression, except that it postpones the instantiation of cer-

tain atoms, as explained next.

The normal progression can be defined recursively starting from

atoms and moving to more and more complicated formulas. For

the complete set of rules, see for example [1]. Only the case of

atomic formulas needs to be discussed here. At the atomic level,

prog(p, si) = true if si |= p and prog(p, si) = false if si |= ¬p. In
other words, all occurrences of atoms in the progressed formula that

are not inside a temporal operator are replaced by their actual truth

values in the corresponding state.

The event-specific formula progression applies different rules at

the atomic level. For each atom p in the initial problem definition, de-
fine a new variable p0. Define a set of atomsZi as pre(πe)∪eff(e1)∪
del(e1) ∪ · · · ∪ eff(ei) ∪ del(ei). Being independent from the first i
steps of πe, atoms q /∈ Zi preserve their value all the way from sg to

si. For an atomic formula p, the event-specific progression is defined
as eprog(p, si) = p0 if p /∈ Zi, and eprog(p, si) = prog(p, si) ∈
{true, false} if p ∈ Zi. The progression rules for more complicated,

non-atomic formulas are the same as in normal progression. Usual

simplifications such as true∨ α = true are useful to eliminate irrele-
vant occurrences of new variables p0 that might exist in α.
Event-specific progression of ϕ along πe is performed step-by-

step for t times, the same number of steps that normal progression
was performed before detecting that πe was a bad event sequence.

The resulting formula is denoted by eprog(ϕ, πe, t). Consider that P
is the set of all new boolean variables p0 added during event-specific

progression. Each element p0 ∈ P generates one literal to be added
to c as a new conjunction. If p is true in sg , then p is added to c.
Otherwise, ¬p is the newly created literal.
It can be shown that the condition c computed as before im-

plies both conditions (1) and (2). Implying condition (1) is obvi-

ous from the way c is initialized. A formal proof for condition (2)
is skipped to save space. The intuition is that the only atoms that

could possibly impact the normal formula progression of ϕ along πe

are those determined by pre(πe) (i.e., atoms in Zt) and atoms p with
p0 ∈ P . The condition c is the assignment in sg of the atoms in

pre(πe) ∪ {p|p0 ∈ P}.
Before creating the literals to be added to c, P can be reduced

with a greedy procedure that is linear in the size of P . The cor-
rectness of the extracted information c is preserved in the sense
that it still implies conditions (1) and (2). A formula β is initial-
ized to eprog(πe, ϕ, t). The procedure iteratively selects one vari-
able p0 from P and instantiates it in β with the value of p in sg .

This is repeated until β becomes equivalent to prog(sg, πe, ϕ, t),
the formula obtained by normal progression from sg along πe for

t steps. The variables in P that were not instantiated in this loop
can safely be skipped when the literals are generated. The condi-

tion on line 7 of Algorithm 2 is easy to check for F-paths, since

prog(sg, πe, ϕ, t) = false. The implemented system skips the greedy
reduction of P for C-paths. It is possible to address this, but the ex-
periments reported next did not indicate a performance bottleneck

caused by this choice.

As a simple example, if eprog(ϕ, πe, t) is false, then no additional
information is added to c besides the existing part pre(πe). In such
a case, regardless of the values of other variables in sg , the precon-

ditions and the effects of the event sequence alone are enough to

progress ϕ to false.

5 Experimental Results

This first part of this section introduces a new benchmark domain.

Our experiments are described next. The last part of the section con-

tains the results and their analysis.

Benchmark and Setup. Among the many available planning

benchmarks, we are not aware of the existence of an encoding that

is suitable to the model presented in Section 3, which includes

Algorithm 2 Learning step in pseudocode.

1: c← pre(πe)
2: P ← all new variables p0 in eprog(πe, ϕ, t)
3: if perform greedy reduction of P (optional) then
4: β ← eprog(πe, ϕ, t)
5: PN ← P
6: P ← ∅
7: while not (β ≡ prog(sg, πe, ϕ, t)) do
8: select p0 ∈ PN

9: instantiate p0 in β with p’s value in sg

10: remove p0 from PN and add it to P
11: for each p0 ∈ P do
12: l← (sg |= p)?(p) : (¬p)
13: c← c ∧ l
14: return c

a deterministic planning stage (configuration) followed by a non-

deterministic evolution in the event space (nominal behaviour). A

new domain has been designed to carry out the experimental eval-

uation presented in this section. Because of lack of space, only a

brief description is included here. The website http://abotea.

rsise.anu.edu.au/factory-benchmark/ contains a de-

tailed presentation and the source code of a problem generator.

Each problem instance contains a collection of components split

into two categories: machines and repositories. At most two reposi-

tories can be connected to a machine at a time. A repository cannot

simultaneously be connected to more than one machine. Each repos-

itory stores raw material of a certain type and can transfer batches of

it to a connected machine. A machine can combine two types of raw

material to generate a final product.

Planning actions consist of both changing connections between

repositories and machines, and component-specific operations such

as cleaning a machine. The nominal behavior of a system includes

transferring raw products from a repository to a machine, and creat-

ing final products from combinations of raw materials. Furthermore,

certain combinations of raw products can break a machine that is

not clean. In experiments, a temporally extended goal, expressed in

LTL, is a conjunction of conditions such as never break a machine

and eventually generate certain products.

The code is implemented in Java 1.6. Büchi automata

are built using the LTL2BA package, available at http:

//www-i2.informatik.rwth-aachen.de/Research/

RV/ltl2ba4j/index.html. The experiments are carried out

on a 3.4 Ghz machine, with 1.8 GB allocated to the heap memory

and 1.8 GB assigned to the stack memory. The time limit is 15

minutes per problem. We are not aware of any existing system

designed for the problem addressed in this paper. In the current

experiments, the new solver is compared against a basic version

where the learning component is switched off.

A set of 350 problem instances is created as follows. The number

of repositories r is fixed to 4 and the number of machines m varies
from 4 to 10. For each combination (r, m), 50 problems are gen-
erated. The LTL goal formulae range in size from 5 to 15 conjunc-

tive conditions. The parameters r and m are chosen in such a way
that the problems gradually scale up until the basic solver reaches its

limits within the given time and memory constraints. The problem

collection contains both instances with solutions and instances that

can be proven unsolvable within the allocated resource limits. The

latter category is useful to evaluate the impact of learning on reduc-

ing the number of model checking rounds. When no goal state exists,

both system versions have to visit all states in the planning space and

the difference in the overall performance is mostly explained by the

number of model checking rounds.

Results. Figure 1 shows the total running time for instances that

are proven unsolvable. Each data point in a curve corresponds to one

problem instance. The problems are ordered to obtain a monoton-

ically increasing curve for the basic solver. Learning improves the

number of model checking rounds. As explained before, the number

of nodes in planning search is not affected in such problems. Process-

ing one node in informed planning (i.e., in the system with learning

enabled) is more expensive, since a relaxed plan has to be computed.

The overall improvement achieved by learning in this subset appears

to be almost constant across the problem range.

In instances where a solution is found (Figure 2), learning im-

proves not only the number of model checking rounds but also the

number of nodes expanded in planning. As compared to Figure 1,

the speed-up factor increases as the problems gets larger. The largest

improvement in this set reaches two orders of magnitude.

Given a problem instance, assume that (P, M, L) tells the percent-
age that each system module (i.e., planning, model checking, learn-

ing) contributes to the total running time. (P (m), M(m), L(m)) is
the average over the problems with m machines. When m varies
from 4 to 10,L(m) is stable around a value of 3 to 4%.P (m) slightly
increases from 70% to 80%. When learning is switched off, the only

modules that contribute to the total running time are planning and

model checking. The average weight of the planning time slightly

increases from 55% whenm = 4 to 60% whenm = 10.

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

T
im

e
 (

s
e

c
o

n
d

s
)

Instance

Basic
Learning

Figure 1. Time for instances with no solution. Note the logarithmic scale.

Learning keeps the number of model checking rounds to very

small values, whereas the basic system faces an exponential growth

as problems increase in difficulty. Figure 3 illustrates this for prob-

lems with solutions. The situation is very similar for problems with

no solution. The corresponding chart is skipped to save space.

When learning is switched off, planning search is equivalent to

breadth-first search, which is guaranteed to find solutions of optimal

length. Figure 4 presents the quality of solutions computed by the

system with learning enabled. The problems with solution solved by

both systems are included in this summary. The sub-optimality of a

solution is measured as l−o
o
× 100, where l is the actual length and

o is the optimal length found with breadth-first search. In Figure 4,
each bar counts how many problems fit into the corresponding sub-

optimality range. The data indicate that a majority of the solutions

found by the learning system are optimal.

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180

T
im

e
 (

s
e

c
o

n
d

s
)

Instance

Basic
Learning

Figure 2. Time for instances with solutions on a logarithmic scale.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100 120 140 160 180

R
o

u
n

d
s

Instance

Basic
Learning

Figure 3. Model checking rounds for instances with solution.

6 Conclusion and Future Work

Advancing recent contributions that extend classical planning with

temporal logic, this paper focuses on a planning model that combines

temporally extended goals with uncontrollable events. The model is

a generic encoding of a real-life application where a system should

automatically be configured such that its future nominal behavior re-

spects a given condition expressed in temporal logic.

Figure 4. Solution quality when learning is used.

A solving architecture that combines elements of planning, model

checking and learning is presented and analyzed in detail. An on-

line learning procedure builds up information that is used both as a

reachability goal in planning search and as a condition to safely skip

unnecessary model checking rounds. In experiments, the incremen-

tally learned information has a great contribution to speeding up the

solving process.

Future work includes integrating the planning method presented

in this paper with monitoring and diagnosis algorithms. The latter

monitor a system to decide whether the nominal behavior is the de-

sired one. When faults are detected, the planning method changes the

system into a correct configuration.

7 Acknowledgment

NICTA is funded by the Australian Government’s Department of

Communications, Information Technology, and the Arts and the Aus-

tralian Research Council through Backing Australia’s Ability and the

ICT Research Centre of Excellence programs. This work has been

initiated when the first author was a visiting student at NICTA. We

thank Patrik Haslum, Sophie Pinchinat, Jussi Rintanen and Sylvie

Thiébaux for useful discussions on this topic.

REFERENCES

[1] F. Bacchus and F. Kabanza, ‘Using Temporal Logics to Express Search
Control Knowledge for Planning’, Artificial Intelligence, 16, 123–191,
(2000).

[2] J. Baier, F. Bacchus, and S. McIlraith, ‘A Heuristic Search Approach
to Planning with Temporally Extended Preferences’, in Proceedings of
IJCAI-07, pp. 1808–1815, (2007).

[3] M. Barbeau, F. Kabanza, and R. St-Denis, ‘Synthesizing Plant Con-
trollers Using Real-Time Goals’, in IJCAI-95, pp. 791–798, (1995).

[4] M. Barbeau, F. Kabanza, and R. St-Denis, ‘A Method for the Synthesis
of Controllers to Handle Safety, Liveness, and Real-Time Constraints’,
IEEE Transactions on Automatic Control, 43(11), 1453–1559, (1998).

[5] G.E. Fainekos, H. Kress-Gazit, and G.J. Pappas, ‘Hybrid Controllers
for Path Planning: A Temporal Logic Approach’,Decision and Control,
and European Control Conference CDC-ECC-05, 4885–4890, (2005).

[6] A. Gerevini and D. Long, ‘Plan Constraints and Preferences for
PDDL3’, Technical report, University of Brescia, (2005).

[7] G. De Giacomo and M. Y. Vardi, ‘Automata-Theoretic Approach to
Planning for Temporally Extended Goals’, in Proceedings of ECP-99,
pp. 226–238, (1999).

[8] J. Hoffmann and B. Nebel, ‘The FF Planning System: Fast Plan Gener-
ation Through Heuristic Search’, JAIR, 14, 253–302, (2001).

[9] C. W. Hsu, B. W. Wah, R. Huang, and Y. X. Chen, ‘Handling Soft Con-
straints and Preferences in SGPlan’, in ICAPSWorkshop on Preferences
and Soft Constraints in Planning, pp. 54–57, (2006).

[10] F. Kabanza and S. Thiébaux, ‘Search Control in Planning for Tem-
porally Extended Goals’, in Proceedings of ICAPS-05, pp. 130–139,
(2005).

[11] S. Kambhampati, ‘Improving Graphplan’s Search with EBL and DDB
Techniques’, in Proceedings of IJCAI, pp. 982–987, (1999).

[12] M. Kloetzer and C. Belta, ‘Managing non-determinism in symbolic
robot motion planning and control’, in Robotics and Automation-07,
pp. 3110–3115, (2007).

[13] J. Kvarnström and M. Magnusson, ‘TALplanner in IPC-2002: Exten-
sions and Control Rules’, JAIR, 20, 343–377, (2002).

[14] T. Latvala, A. Biere, K. Heljanko, and T. Junttila, ‘Simple Bounded LTL
Model Checking’, in Proceedings of Formal Methods in Computer-
Aided Design (FMCAD’2004), pp. 186–200, (2004).

[15] J. Rintanen, ‘Unified Definition of Heuristics for Classical Planning’,
in Proceedings ECAI-06, pp. 600–604, (2006).

[16] S. Jabbar S. Edelkamp and M. Nazih, ‘Large-Scale Optimal PDDL3
Planning with MIPS-XXL’, in Proceedings of the International Plan-
ning Competition IPC-05, (2006).

[17] B. C. Williams and P. P. Nayak, ‘A Model-based Approach to Reac-
tive Self-Configuring Systems’, in Proceedings AAAI-96, pp. 971–978,
(1996).

