Scalable, Parallel Best-First Search for Optimal Sequential Planning

AKkihiro Kishimoto Alex Fukunaga Adi Botea
Tokyo Institute of Technology Tokyo Institute of Technology NICTA and
and JST PRESTO fukunaga@is.titech.ac.jp The Australian National University

kishimoto @is.titech.ac.jp

Abstract

Large-scale, parallel clusters composed of commodity pro-
cessors are increasingly available, enabling the use of vast
processing capabilities and distributed RAM to solve hard
search problems. We investigate parallel algorithms for opti-
mal sequential planning, with an emphasis on exploiting dis-
tributed memory computing clusters. In particular, we focus
on an approach which distributes and schedules work among
processors based on a hash function of the search state. We
use this approach to parallelize the A* algorithm in the op-
timal sequential version of the Fast Downward planner. The
scaling behavior of the algorithm is evaluated experimentally
on clusters using up to 128 processors, a significant increase
compared to previous work in parallelizing planners. We
show that this approach scales well, allowing us to effectively
utilize the large amount of distributed memory to optimally
solve problems which require hundreds of gigabytes of RAM
to solve. We also show that this approach scales well for a
single, shared-memory multicore machine.

Introduction

In classical planning, many problem instances remain hard
for state-of-the-art planning systems. Both the memory
and the CPU requirements are main causes of performance
bottlenecks. The problem is especially pressing in se-
quential optimal planning. Despite significant progress in
recent years in developing domain-independent admissi-
ble heuristics (Haslum and Geffner 2000; Edelkamp 2001;
Helmert, Haslum, and Hoffmann 2007), scaling up optimal
planning remains a challenge. Recent results suggest that
improving heuristics may provide diminishing marginal re-
turns (Helmert and Roger 2008), suggesting that research in
orthogonal methods for speeding up search is necessary.
Multi-processor, parallel planning' has the potential to
provide both the memory and the CPU resources required to
solve challenging problem instances. Parallel planning has
received little attention in the past, two notable exceptions
being the work of Zhou and Hansen (2007) and Burns et

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

'In this paper, parallel planning refers to multi-processor plan-
ning, as opposed to computing parallel plans with a serial algo-
rithm.

adi.botea@nicta.com.au

al. (2009). While multiprocessors were previously expen-
sive and rare, multicore machines are now ubiquitous. Fu-
ture generations of hardware are likely to continue to have
an increasing number of processors, where the speed of each
individual CPU core does not increase as rapidly as in past
decades. Thus, exploiting parallelism will be the only way to
extract significant speedups from the hardware. Since paral-
lelism is a ubiquitous trend, there is a need to develop tech-
niques to enable the domain-independent planning technol-
ogy to scale further.

Previous work in parallel planning (Zhou and Hansen
2007; Burns et al. 2009) has taken a multi-threaded ap-
proach on a single, multicore machine. The number of pro-
cessors is limited to relatively small values (typically up to
8). Thread-based approaches are specific to shared-memory
environments (Lin and Snyder 2009), which have less mem-
ory and CPU cores than a distributed-memory environment.
Zhou and Hansen (2007) address the memory bottleneck by
resorting to the external memory, which introduces an addi-
tional time overhead caused by the expensive I/O operations.

Our goal is to push the scalability further by using the
large memory and CPU resources available in distributed
memory clusters.

We introduce Hash Distributed A* (HDA*), an algorithm
that extends A* (Hart, Nilsson, and Raphael 1968) to a par-
allel environment. HDA* combines successful ideas from
previous parallel algorithms, such as PRA* (Evett et al.
1995), which is based on A*, and TDS (Romein et al. 1999),
a parallel version of IDA* (Korf 1985). As introduced in
PRA*, a hash function assigns each state to a unique pro-
cess. A newly generated state is sent to its destination pro-
cess, instead of being queued for expansion locally in the
process that generated it. The main advantage is that state
duplicate detection can be performed locally, with no com-
munication overhead. Despite this, PRA* incurs a consider-
able synchronization overhead caused by using synchronous
communication. As in TDS, HDA* performs asynchronous,
non-blocking communication. Unlike TDS, HDA* is a par-
allelization of A*. Besides performance, another key feature
of HDA* is simplicity. Simplicity is especially important
in parallel algorithms, as debugging a program on a multi-
machine environment is very challenging.

We implement HDA* on top of the optimal version of
the Fast Downward planner, which is described by Helmert,

Haslum, and Hoffmann (2007). Rather than using threads,
our implementation is a distributed, message passing im-
plementation using MPI (Snir and Gropp 1998), which al-
lows parallelization in distributed memory environments as
well as shared memory and mixed environments (cluster of
multi-core machines), and support mechanisms for both syn-
chronous and asynchronous communication.

The scaling behavior of the algorithm is evaluated experi-
mentally on clusters using up to 128 processors, a significant
increase compared to previous work in parallelizing plan-
ners. We show that this approach scales well, allowing us
to effectively utilize the large amount of distributed memory
to optimally solve problems which require hundreds of gi-
gabytes of RAM. We also show that HDA* works well on a
single, multi-core machine, outperforming algorithms such
as PRA* and a parallel implementation of A* based on work
stealing, a standard strategy in parallel search.

The rest of the paper is organized as follows. The next
section presents background information, followed by re-
lated work. Our planning algorithm is described in the fourth
section. We then present an empirical analysis, followed by
concluding remarks and future work ideas.

Background

Efficient implementation of parallel search algorithms is
challenging largely due to several types of overhead. Search
overhead occurs when a parallel implementation of a search
algorithm generates more states than a serial implementa-
tion. The main cause of search overhead is partitioning of
the search space among processors, which has the side ef-
fect that the access to non-local information is restricted. For
example, a sequential A* algorithm terminates immediately
after a solution is found, as it is guaranteed to be optimal.
In contrast, when a parallel A* algorithm finds a (first) solu-
tion, that is not necessarily an optimal solution. Better solu-
tions might exist in non-local portions of the search space.

The search overhead can be negative, which means that
parallel search expands fewer states than sequential search.
A negative search overhead possibly results in achieving
super-linear speedup and often indicates an inefficiency in
the serial implementation or algorithm.

The synchronization overhead is the idle time wasted at
synchronization points, where some processors have to wait
for the others to reach the synchronization point. For exam-
ple, in a shared-memory environment, the idle time can be
caused by mutual exclusion (mutex) locks on shared data
that cannot be accessed by more than one processor at a
time. The communication overhead refers to the extra cost
of inter-process information exchange, and mainly occurs in
a distributed-memory environment.

The key to achieving a good speedup in parallel search is
to minimize such overheads. This is often a difficult task, in
part because the overheads depend on one another. For ex-
ample, reducing the search overhead usually increases the
synchronization and the communication overheads. It is
hard to theoretically characterize the best trade-off in mini-
mizing the overheads. In practice, the trade-offs are evalu-
ated and tuned experimentally.

Work stealing is a standard approach for parallel search,
and is used in many applications in shared-memory envi-
ronments. It aims at achieving good load balancing (i.e.,
keep all processors busy at all times). In work-stealing,
each processor maintains a local work queue. When a pro-
cessor P generates new work (i.e., new states to be ex-
panded) w, it places w in P’s own local queue. When P
has no work in its queue, it steals work from the queue of a
busy processor. Several strategies have been studied to se-
lect a processor offloading the work (e.g. (Feldmann 1993;
Frigo, Leiserson, and Randall 1998; Rao and Kumar 1987)).
A typical implementation of the local work queue for paral-
lel A* is to simply use the local open list of a processor.

In many search applications, including planning bench-
marks, the search space is a graph rather than a tree. More
than one path can lead to the same state. Sequential best-first
search can detect and handle this by using a closed list (i.e.,
hash table) or duplicate detection techniques (e.g. (Korf and
Zhang 2000; Zhou and Hansen 2006)). Efficient duplicate
detection is critical for performance, both in serial and par-
allel search algorithms, and can potentially eliminate vast
amounts of redundant work.

In parallel search, performing duplicate state detection in
parallel incurs several overheads. The cause of an overhead
depends on the choices of algorithms and machine environ-
ments. In a shared-memory environment, many approaches,
including work-stealing, need mutex operations for the open
and closed lists, to guarantee that these structures are cor-
rectly managed. For example, an early work on parallel A*
which shares one open list among all processors (Kumar,
Ramesh, and Rao 1988) has a severe bottleneck caused by
the contention for the open list.

A discussion on how such challenges are addressed in ac-
tual algorithms can be found in the next section.

Related Work

Parallel Retracting A* (PRA™) (Evett et al. 1995) simultane-
ously addresses the problem of work distribution and dupli-
cate state detection. In PRA™, each processor maintains its
own open and closed lists. A hash function maps each state
to exactly one processor. When generating a state, PRA*
distributes it to the corresponding processor. If the hash keys
are distributed uniformly across the processors, load balanc-
ing is achieved. After receiving states, PRA™ has the advan-
tage that duplicate detection can be performed efficiently.
All the checks are done locally at the destination process.

On the other hand, PRA* incurs a significant synchroniza-
tion overhead, as it uses synchronous communication to dis-
tribute states. When a processor P generates a new state s
and sends it to the destination processor (), P blocks and
waits for @ to confirm that s has successfully been received
and stored. This is needed because PRA* was implemented
on a Connection Machine, where each processor had a lim-
ited amount of local memory. When a processor’s memory
became full, a retraction mechanism was used to remove
nodes in order to free memory.

Transposition-table driven work scheduling (TDS)
(Romein et al. 1999) is a distributed memory, parallel
IDA* algorithm. Similarly to PRA*, TDS distributes work

using a state hash function. As opposed to PRA", it has no
synchronization overhead. Extensive performance analysis
on TDS was later performed (Romein et al. 2002). The
transposition table is partitioned over processors to be used
for detecting and pruning duplicate states that arrive at the
processor. In this way, TDS exploits the large amounts of
local memory that are available on modern machines. As the
number of processing nodes increases, the amount of RAM
in the system increases, allowing more effective duplicate
state detection and pruning. This allows TDS to exhibit a
very low (even negative) search overhead, compared to a
sequential IDA* that runs on a single computational node,
with a limited amount of memory.

A very important contribution of TDS is to make all com-
munication asynchronous. After processor P sends a state
to its destination (), P expands the next state from its lo-
cal open queue without waiting for @ to reply. Instead, each
processor periodically checks if a new state arrives. A possi-
ble concern with TDS is large communication overhead, but
Romein et al. showed that this was not a significant concern
because several states that a processor sends to the same des-
tination can be packed into one message to reduce the com-
munication overhead. TDS achieved impressive speedups in
applications such as the 15-puzzle, the double-blank puz-
zle, and the Rubik’s cube, on a distributed-memory ma-
chine. The ideas behind TDS have also been successfully
integrated in adversarial two-player search (Kishimoto and
Schaeffer 2002; Romein and Bal 2003).

External memory search, a related but different tech-
nique, has been used to address memory bottlenecks (e.g.,
(Edelkamp and Jabbar 2006)). An issue with using exter-
nal memory (such as disk) is the overhead of expensive I/O
operations. In contrast, parallel search can potentially han-
dle both memory and time bottlenecks. Interestingly, some
solutions to reducing the I/O overhead in external memory
search could in principle be adapted to handle the inter-
process communication overhead in parallel search. For ex-
ample, Zhou and Hansen (2007) and, more recently, Burns
et al. (2009) adapt the idea of structured duplicate detection,
which was originally introduced for external memory search
(Zhou and Hansen 2004), to parallel search.

Zhou and Hansen introduce a parallel, breadth-first search
algorithm. Parallel structured duplicate detection seeks to
reduce synchronization overhead. The original state space
is partitioned into collections of states called blocks. The
duplicate detection scope of a state contains the blocks that
correspond to the successors of that state. States whose du-
plicate detection scopes are disjoint can be expanded with
no need for synchronization. Burns et al. (2009) have in-
vestigated best-first search algorithms that include enhance-
ments such as structured duplicate detection and speculative
search. These techniques were effective in a shared memory
machine with up to 8 cores.

Hash Distributed A*

We now describe HDA*, a parallelization of A*. HDA* is a
simple algorithm which combines the hash-based work dis-
tribution strategy of PRA* and the asynchronous commu-
nications of TDS. Unlike PRA*, HDA* does not incorpo-

rate any mechanism for node retraction. This combination
results in a simple algorithm which achieves scalability for
both speed and memory usage.

In HDA* the closed and open lists are implemented as
a distributed data structure, where each processor “owns” a
partition of the entire search space. The partitioning is done
via a hash function on the state, and is described later.

The overall HDA* algorithm begins by the expansion of
the start state at the head processor.

Each processor P executes the following loop until an op-
timal solution is found:

1. First, P checks if a new state has been received in its mes-
sage queue. If so, P checks for this new state s in P’s
closed list, in order to determine whether s is a duplicate,
or whether it should be inserted in P’s local open list?.

2. If the message queue is empty, then P selects a highest

priority state from its local open list and expands it, re-
sulting in newly generated states. For each of the newly
generated states s;, a hash key K (s;) is computed based
on the state representation, and the generated state is then
sent to the processor which owns K (s;). This send is
asynchronous and non-blocking. P continues its compu-
tation without waiting for a reply from the destination.

In a typical, straightforward implementation of a hash-
based work distribution scheme on a shared memory ma-
chine, each processing thread owns a local open/closed list
which is implemented in shared memory, and when a state
is assigned to some thread, the writer thread obtains a lock
on the target shared memory, writes the state, then releases
the lock. Note that whenever a processor P “sends” a state
s to a destination dest(s), then P must wait until the lock
for shared open list (or message queue) for dest(s) is avail-
able and not locked by any other processor. This results in
significant synchronization overhead — for example, it was
observed in (Burns et al. 2009) that a straightforward imple-
mentation of PRA* exhibited extremely poor performance
on the Grid search problem, where multi-core performance
for up to 8 cores was consistently slower than sequential A*.
While it is possible to speed up locking operations by us-
ing, for example, highly optimized lock operations imple-
mentations in inline assembly language such as those which
are commonly used in the two-player game community?, the
performance degradation due to the increase in synchroniza-
tion points caused by locks remains a considerable problem
(see discussion in the next section).

In contrast, the open/closed lists in HDA* are not explic-
itly shared among the processors. Thus, even in a multi-core
environment where it is possible to share memory, all com-
munications are done between separate MPI processes using
non-blocking send/receive operations. Our implementation

ZEven if the heuristic function (Helmert, Haslum, and Hoff-
mann 2007) is consistent, parallel A* search may sometimes have
to re-open the state saved in the closed list. For example, P° may re-
ceive many identical states s with various priorities from different
processors and these s may reach P in any order.

*http://gps.tanaka.ecc.u-tokyo.ac.jp/osl/
osl/doc/html/lightMutex_-8h-source.html

achieves it by using MPI_Bsend and MPI_Iprobe. This en-
ables HDA* to utilize highly optimized message buffers im-
plemented in MPI. Additionally, more than one state can be
packed to reduce the number of MPI communications.

In parallel A*, even if a process discovers a goal state, it
is not guaranteed to be optimal (Kumar, Ramesh, and Rao
1988). When a processor discovers a goal state GG, the pro-
cessor broadcasts the cost of G to all processors. The search
cannot terminate until all processors have proved that there
is no solution with a cost better than that of G. In order to
correctly terminate parallel A*, it is not sufficient to check
the local open list at every processor. We must also prove
that there is no work (states) currently on the way to arrive at
a processor. Various algorithms to handle termination exist.
In our implementation of HDA*, we used the time algorithm
of Mattern (1987), which was also used in TDS.

In a hash based work distribution scheme, the choice of
the hash function is essential for achieving uniform distri-
bution of the keys, which results in effective load balanc-
ing. Our implementation of HDA* uses the Zobrist function
to map a SAS+ state representation (Béackstrom and Nebel
1995) to a hash key. The Zobrist function (Zobrist 1970) is
commonly used in the game tree search community. It is a
very fast hash function based on incrementally XOR’ing the
components of a state. The Zobrist function was previously
used in a sequential planner by Botea et al. (2005).

Results

We experimentally evaluated HDA* by running Fast Down-
ward + HDA* on classical planning instances from the IPC-
3, IPC-4, and IPC-6 planning competitions. Our exper-
imental code is based on a sequential optimal version of
Fast Downward, enhanced with an explicit state abstraction
heuristic (Helmert, Haslum, and Hoffmann 2007). HDA*
is implemented in C++ and compiled with g++, parallelized
using the MPI message passing library. While HDA* and
other parallel search algorithms have nondeterministic be-
havior and there will be some differences between identical
invocations of the algorithms, on the runs where we col-
lected multiple data points, we did not observe significant
differences between runs of HDA*. Therefore, due to the
enormous resource requirements of a large-scale experimen-
tal study4, the results shown are for single runs.

Experiments on a Single, Multi-Core Machine

First, we investigate the scaling of HDA* on a single
machine. We compare HDA* with sequential A* and
shared-memory implementations of PRA* and WSA*
(work-stealing A*). All of our algorithms use TCMalloc
(http://code.google.com/p/google-perftools/),
a fast and thread-safe memory management library.’> In

*We are using a shared cluster for our experiments, and large-
scale experiments have issues of resource contention, because we
are competing for these resources with hundreds of other users. In
addition, some of the resources such as the 128GB RAM machine
incur a usage cost per CPU hour.

3Using TCMalloc also resulted in a slight speedup of our base-
line sequential A* compared to the version obtained from Helmert.

addition to locks available in the Boost C++ library, we
also incorporated spin locks used in GPSshogi® in order to
speed up WSA* and PRA*. The spin lock implementation
is based on the “xchgl” assembly operation.

In WSA¥*, there is a trade-off between searching the most
promising states in parallel and working on the states in a
local open list for avoiding synchronization overhead. The
best work strategy is selected, after comparing several work-
stealing implementations such as techniques in (Feldmann
1993; Kumar, Ramesh, and Rao 1988). Our WSA* manages
the current best score of the states in the open lists. If a
thread expands a less promising state in its local open list, it
tries to steal work from a thread having the most promising
states in the next state selection phase.

These experiments were run on a dual quad-core 2.66GHz
Xeon E5430 with 6MB L2 cache (total of 8 cores) and 16 gi-
gabytes of RAM. Each algorithm used the full 16 gigabytes
of RAM. That is, n-core HDA* spawns n processes, each
using 16/n gigabytes of RAM, sequential A* used the full
16GB available, and the multithreaded PRA* and WSA* al-
gorithms shared 16GB of RAM among all of the threads.

Table 1 shows the speedup of HDA*, PRA*, and WSA*
for 4 cores and 8 cores. In addition to runtimes for all algo-
rithms, the speedup and the parallel efficiency are shown for
HDA*. The efficiency of a parallel computation is defined as
S/ P, where S is the speedup and P is the number of cores.
As shown in Table 1, HDA* performs significantly better
than WSA* and PRA*. With 4 cores, the speedup of HDA*
ranges from 2.62 to 3.67, and the efficiency ranges from 0.65
to 0.92. With 8 cores, the speedup of HDA* ranges from
3.62 to 6.40, and the efficiency ranges from 0.45 to 0.80.

Although it is not possible to directly compare these re-
sults with the results in (Burns et al. 2009) due to many fac-
tors (different underlying search code which uses different
heuristics, different # of cores, different problem instances’,
etc.), it is possible to make some observations about compar-
ative speedups. Compared to sequential A*, the algorithms
proposed in (Burns et al. 2009) achieve excellent, even
super-linear speedups, and this is because of techniques such
as speculative expansion — their algorithms do not directly
parallelize A*; rather, they implement a different, node ex-
pansion strategy in order to overcome parallelization over-
heads, and this resulted in a strategy which outperformed
A*. On the other hand, if we look at the scaling behavior of
each algorithm implementation as the number of cores is in-
creased (i.e., comparison of the exact same code running on

®http://gps.tanaka.ecc.u-tokyo.ac.jp/
gpsshogi/pukiwiki.php?GPSshogi

"Different instances are used because key aspects of the algo-
rithms, such as the heuristic, are different. Instances which are
time-consuming for the algorithms in (Burns et al. 2009) are not
necessarily difficult for HDA*, and vice versa — for example, the
depots-7 and freecell-3 instances are solved in 9.9 seconds and 4.2
seconds by sequential Fast Downward (abstraction size parameter
1000). Instances solved quickly by sequential runs do not yield
much useful information, because they are dominated by startup
and termination overheads when parallelized. Thus, we chose our
instances based on preliminary experiments which indicated the
difficult problems for sequential Fast Downward+LFPA.

A* || WSA* | PRA* HDA* WSA* | PRA* HDA* Abstraction

of cores 1 4 4 4 8 8 8 Initialization
time time time time | speedup eff. time time time | speedup eff. time

Depots4 74.87 47.98 48.31 24.38 3.07 | 0.77 37.92 33.67 15.22 492 | 0.61 4.21
Depots10 || 173.16 || 122.72 | 128.59 66.16 2.62 | 0.65 97.01 92.36 47.8 3.62 | 045 2.03
DriverLog8 95.82 80.19 74.29 33.54 2.86 | 0.71 68.44 54.85 24.01 3.99 0.5 0.12
Freecell5 || 113.09 52.68 52.66 33.65 3.36 | 0.84 38.06 35.38 20.22 5.59 0.7 5.26
Roverl12 || 375.03 || 295.38 | 269.28 | 122.84 3.05 | 0.76 || 234.46 | 196.27 80.66 4.65 | 0.58 0.11
Zenotravel9 || 135.88 || 119.06 | 106.65 474 2.87 | 0.72 || 103.98 79.76 35.69 3.81 | 0.48 0.16
PipesNoTk14 || 165.37 || 100.82 94.28 51.59 3.21 0.8 81.01 65.36 32.89 5.03 | 0.63 1.16
PipesTank15 60.25 31.53 32.13 18.18 3.31 | 0.83 24.26 22.03 11.36 5.31 | 0.66 4.92
Pegsol26 44.88 27.45 26.22 12.83 3.5 | 0.87 22.6 18.57 8.83 5.08 | 0.64 6.64
Pegsol27 || 152.79 92.13 81.39 44.01 3.47 | 0.87 74.26 57.96 26.57 5.75 | 0.72 0.82
Pegsol28 || 661.14 || 392.82 | 363.61 | 190.57 3.47 | 0.87 || 318.79 | 249.95 | 115.43 5.73 | 0.72 0.49
Sokoban4 38.45 22.66 21.65 10.71 3.59 0.9 18.42 15.2 6.27 6.13 | 0.77 2.5
Sokoban9 43.69 26.24 24.29 12.34 3.54 | 0.89 21.62 17.02 6.82 6.4 0.8 1.4
Sokoban13 41.59 27.22 25.84 12.85 3.24 | 0.81 22.06 18.05 7.44 5.59 0.7 0.77
Sokoban30 || 290.39 || 143.19 | 145.53 79.05 3.67 | 0.92 || 105.97 98.46 45.92 6.32 | 0.79 1.05

Table 1: Comparison of sequential A*, WSA* (work-stealing), PRA*, and HDA* on 1, 4, and 8 cores on a 2.66GHZ, 16GB 8-core Xeon
E5430. Runtimes (in seconds), speedup, efficiency, and abstraction heuristic initialization times (not included in runtimes) are shown.

CPU Histary

V

CPU Histary

CPU History

Figure 1: CPU Utilization of HDA* (top), PRA* (middle),
and WSA* (bottom) on 8 core multi-core (Depots-10).

1 core vs. n cores), the scaling of speedups and efficiency
in HDA* is competitive with the scaling of speedups and
efficiency in the algorithms in (Burns et al. 2009).

Figure 1 shows snapshots of CPU usage for 8-core runs
of HDA*, PRA*, and WSA¥*, respectively, on the Depots-
10 problem instance. The horizontal and vertical lines rep-
resent the time and the load factor respectively. Because of
its asynchronous communications, HDA* keeps all 8 cores
at close to 100% usage. On the other hand, the CPU us-
age for PRA* and WSA* fluctuates significantly, due to the
synchronization overhead. This explains the superior perfor-
mance of HDA* compared to PRA* and WSA*.

Experiments on a Cluster

Next, we investigate the scaling behavior of HDA* for clus-
ters of machines. These parallel experiments were per-
formed on a Sun Fire X4600 cluster, where each node has 8
AMD dual core Opteron processors (total 16 cores per node)
and 32 GB RAM per node, with a clock speed of 2.4GHz.
We used 1-8 nodes in our experiments (i.e., 16-128 cores).

Table 2 shows the runtimes and speedup, and efficiency of
HDA* on 16, 64, and 128 cores, relative to sequential A*.
There was 2GB RAM per process, i.e., 32GB, 128GB, and
256GB aggregate RAM for 16, 64, 128 cores, respectively.
Since there are 16 cores and 32GB memory per processing
node in our cluster, 2GB is the maximum amount usable per
node. Using more RAM per node is not efficient, e.g., if we
allocate the full 32GB RAM on a node to a single core, 15
cores would be left idle.

The sequential A* was run on a special machine with a
very large amount of RAM (128GB). Although the CPU for
this machine is a 2.6GHz Opteron, we scaled the results for
sequential A* by a factor of 2.6/2.4 in Tables 2-3, so that the
sequential results could be compared with the parallel results
which were run on 2.4GHz Opteron CPUs. We verified the
correctness of this scaling factor by using sequential search
runtimes on easier problems with both this 2.6GHz machine
and a single core on the 2.4GHz parallel machine. Although
this 128GB machine has 16 cores, we use just one core, and
use all of the 128GB of RAM for a sequential A* process.®

The times shown in Table 2 include the time for the search
algorithm execution, and exclude the time required to com-
pute the abstraction table for the LFPA heuristic, since this
phase of Fast Downward+LFPA has not been parallelized
yet® and therefore requires the same amount of time to run

8Due to the runtime scaling, as well as the architectural differ-
ences between Opteron and Xeon processors, the 1-core Opteron
results in Tables 2-3 are not directly comparable with the 1-core
Xeon results in Table 1.

"We are currently completing a straightforward parallelization

Abstraction Opt.

1 core 16 cores 64 cores 128 cores Initialize Plan

time time speedup | eff time speedup | eff time speedup | eff Time Len.

Depot13 325.74 38.23 8.52 0.53 11.86 27.46 0.43 10.28 31.70 0.25 5.59 25
Rover12 521.13 58.09 8.97 0.56 16.09 32.38 0.51 10.01 52.04 0.41 0.20 19
ZenoTravll 2688.93 n/a n/a n/a 82.41 32.63 0.51 44.90 59.88 0.47 0.40 14
PipesNoTk24 || 1269.16 || 165.59 7.66 048 || 42.27 30.03 0.47 34.20 37.11 0.29 7.26 24
Pegsol28 886.01 75.69 11.71 0.73 21.75 40.73 0.64 17.54 50.51 0.29 0.99 35
Pegsol29 4509.22 n/a n/a n/a 109.65 41.13 0.64 || 75.35 59.84 0.47 15.15 37
Sokoban12 466.90 37.47 12.46 0.78 14.24 32.80 0.51 12.37 37.75 0.29 2.39 172
Sokoban14 2201.76 n/a n/a n/a 55.75 39.50 0.62 34.48 63.86 0.50 1.34 205
Sokoban15 2639.30 n/a n/a n/a 76.55 34.48 0.54 || 45.15 58.46 0.46 2.77 155
Sokoban21 1529.45 || 145.76 10.49 0.66 || 45.74 33.44 0.52 29.25 52.28 0.41 3.77 162
Sokoban23 589.89 45.89 12.85 0.80 16.26 36.28 0.57 13.23 44.60 0.35 2.06 177
Sokoban24 950.55 76.82 12.37 0.77 26.11 36.41 0.57 18.06 52.62 0.41 2.37 125
Sokoban30 378.30 31.49 12.01 0.75 13.05 29.00 0.45 11.91 31.78 0.25 2.20 290
Sokoban25 n/a n/a n/a n/a n/a n/a n/a 129.05 n/a n/a 3.85 134
Driverlog13 n/a n/a n/a n/a n/a n/a n/a 179.28 n/a n/a 0.66 26

Table 2: Execution time (for search, excluding abstraction initialization), speedup, and efficiency on a large-scale cluster with using up to
128 2.4GHz Opteron cores, 2GB RAM per core (Abstraction size = 1000). The 1-core results use a Opteron-based machine with 128GB

RAM. “n/a” = failure due to exhausted memory.

regardless of the number of cores. The abstraction heuristic
initialization times are shown separately in Table 2. For ex-
ample, the IPC6 Pegsol-28 instance, which requires 4509
seconds with 1 core, was solved in 75 seconds with 128
cores, plus 15.15 seconds for the abstraction table genera-
tion. The “n/a” in the Sokoban-14/15 entries for 16 cores
indicates that 32GB was insufficient to solve these instances
(additional memory would allow 16-cores to solve these in-
stances). The Sokoban-25 and Driverlog-13 instances were
only solved using 128 cores, because only the 128-core run
had sufficient memory (256GB).

Overall, HDA* achieved a search speedup of 8-13 with
16 cores, 27-41 with 64 cores, and 31-64 with 128 cores,
demonstrating reasonably good scalability for a large num-
ber of processors. The parallel efficiency of HDA* ranges
between 0.48-0.77 for 16 cores, 0.43-0.64 for 64 cores, and
0.25-0.50 for 128 cores.

The search overhead, which indicates the extra states ex-
plored by parallel search, is defined as:

number of states searched by parallel search

SO = 100x 1).

number of states searched by sequential search B

Figure 2 shows the search overhead, plotted against the
length of the optimal plan for the 16, 64, and 128 core data
in Table 2. Although most of the data points are at the
lower left corner (low search overhead), there are some data
points with very high search overhead. The figure shows that
search overhead in HDA* is clearly correlated with solution
length. The data points in the right side, with long solutions
and high overhead, are IPC6 Sokoban instances.

A common metric for measuring how evenly the work is
distributed among the cores is the load balance, defined as
the ratio of the maximal number of states searched by a core
and the average number of states searched by each core. For

which should require O(log(n)) time, instead of the current O(n),
for n SAS+ variables in a problem instance.

Search Overhead
120 : : ‘ ®
16 processors A
100 F 64 processors FEa
128 processors —x- ¥
80 R
60 | ‘ | 1
40 t PR .
20 | B /\ 1
Opprt | T]
-20

50 100 150 200 250 300
Solution length

Figure 2: Search overhead as a function of solution length.

128 cores, load balance ranges from 1.03 to 1.13 on the in-
stances shown. One possible reason for the imbalance in
some domains may be the “hotspots” — frequently generated
duplicate nodes which are sent to a small number of cores
by the hash function.

The size of the heuristic abstraction table is a control pa-
rameter for Fast Downward. While almost all of the data
presented in this paper is based on a value of 1000 for the
abstraction size parameter, preliminary experiments have
shown that search speedups were not dependent on the ab-
straction size parameter. As an example, Table 3 compares
search times for 1 and 16 cores using an abstraction size of
5000. The speedups and parallel efficiencies are compara-
ble to the 16-core results in Table 2 for the same instances
using abstraction size 1000. Of course, as the abstraction
size parameter is increased, the amount of time spent for

1 core 16 cores Abstraction

time time speedup effic. init time

Rover12 404.51 | 48.04 8.44 0.53 1.12
ZenoTravell 1 12.13 2.08 5.82 0.36 1.29
PipesNoTk24 || 162.52 | 25.33 6.42 0.40 21.81

Pegsol28 974.63 | 83.33 11.70 || 0.73 16.35

Sokoban24 979.21 | 102.05 9.6 0.60 6.52

Table 3: Search execution time, speedup, and efficiency for
abstraction size = 5000. Times are in seconds (same ma-
chines as in Table 2).

initializing the abstraction table, a serial bottleneck in our
current implementation, increases, so this increases the total
runtime. Furthermore, there is a tradeoff between the size of
the abstraction table and the amount of RAM Ileft available
for the local open/closed lists. Increasing the abstraction ta-
ble size generally results in more efficient search, but if this
also results in a large reduction in available memory, it can
lead to search failures due to RAM exhaustion.

Finally, we note that as the number of machines increases,
we increase not only the number of CPU cores available, but
also the aggregate amount of RAM available. This is very
important for algorithms such as A*, where the amount of
RAM is the limiting factor. We have observed that as we
increase the aggregate RAM from 16GB to 256GB, we are
able to solve an increasing number of hard IPC instances.
For example, with sequential Fast Downward on a machine
with 16GB, we could only solve 11 out of the 30 IPC6
Sokoban instances (with an abstraction size of 1000), but
using a cluster with aggregate 256GB RAM, 21 instances
were solved. Fast Downward exhausts 128GB RAM within
3-6 hours, depending on the problem. The Sokoban-25 and
Driverlog-13 instances could only be solved using 128 cores
and 256GB aggregate cluster memory.

Discussion and Conclusion

In order to scale up the capabilities of sequential optimal
planning algorithms, this paper investigated the paralleliza-
tion of the search algorithm. We developed Hash Distributed
A*, a parallelization of A* for a distributed memory cluster.
HDA* relies on two key ideas: (1) distribution of work using
a hash value for generated states, which is from PRA* (Evett
et al. 1995), and (2) completely asynchronous operation,
which was shown to be effective in TDS, a parallel IDA*
algorithm (Romein et al. 1999). We implemented HDA*
as a replacement for the sequential A* search engine for
the state-of-the-art, optimal sequential planner, Fast Down-
ward+LFPA (Explicit State Abstraction Heuristic) (Helmert,
Haslum, and Hoffmann 2007).

Our experimental evaluation shows that HDA* scales
well, achieving 30-60x speedup on 128 processing cores.
HDA* exploits the large amount of distributed memory
available on a modern cluster, enabling larger problems to
be solved than previously possible on a single machine. We
are in the process of scaling the experiments to larger num-
ber of cores (up to 1024).

One particularly attractive feature of HDA* is its sim-

plicity. Work distribution is done by a simple hash func-
tion, and there is no complex load balancing mechanism.
All communications are asynchronous, so complex synchro-
nization protocols are not necessary. Despite its simplicity,
HDA¥* achieves significant speedup over the state-of-the-art,
Fast Downward+LFPA planner. Simplicity for parallel algo-
rithms is very important, particularly for an algorithm that
runs on multiple machines, as debugging a multi-machine,
multi-core algorithm is extremely challenging. For compar-
ison, we have also started to implement a distributed mem-
ory, work-stealing algorithm, and have found that it is signif-
icantly more difficult to implement correctly and efficiently
compared to HDA*.

While we developed HDA* for distributed memory paral-
lel search on a distributed memory cluster of machines, we
have also shown that HDA* achieves reasonable speedup on
a single, shared memory machine with up to 8 cores, with
results that are superior to two, previous approaches: thread-
based work-stealing (WSA*) and PRA*. HDA* yields
speedups of 3.6-6.3 on 8 cores. We have also shown that,
on an 8-core machine, HDA* keeps all processors almost
completely busy, while PRA* and WSA¥*, allow processors
to be idle due to synchronization overhead.

Thus, the main contributions of this paper are: (1) the pro-
posal of HDA*, a simple, parallel best-first algorithm com-
bining the hash-based work distribution strategy of PRA*
and the asynchronous communication strategy of TDS; (2)
an experimental demonstration that HDA* can significantly
speed up the state-of-the-art Fast-Downward+LFPA plan-
ner; (3) an experimental demonstration that HDA* scales up
reasonably well to 128 cores; and (4) a demonstration that
HDA* performs reasonably well on a single machine, out-
performing standard thread-based techniques (WSA* and
PRA*). This work has shown that HDA* is a promising
approach to parallelizing best-first search for sequential op-
timal planning.

Currently, HDA* uses a single process per core. Although
the machine it runs on can be a shared memory machine
(most modern machines are multicore, shared memory ma-
chines), HDA* executes as a set of independent processes
without sharing any memory resources among cores that are
on the same machine. This means that the memory used for
the LFPA abstraction heuristic (Helmert, Haslum, and Hoff-
mann 2007) is unnecessarily replicated n times on an n-core
machine, which can be a significant source of inefficiency
in memory usage. We are currently investigating a hybrid,
distributed/shared memory implementation of HDA* which
eliminates this inefficiency. One possible direction for such
a hybrid implementation is to distribute work among ma-
chines using hash-based distribution, but within a single ma-
chine incorporate techniques such as speculative expansion
that have been shown to scale well on a shared memory en-
vironment with up to 8 cores (Burns et al. 2009).

The speedups we obtain are more modest than the results
obtained by Romein et al. (1999) for TDS in puzzle do-
mains, who report linear speedups compared to sequential
IDA*. One reason why such impressive speedups are possi-
ble for parallel IDA* might be that increasing the aggregate
RAM results in a larger, distributed transposition table for

IDA*, which leads to more pruning, and therefore actually
improves the search efficiency relative to sequential IDA*
on a single machine with less aggregate RAM. In search
spaces with duplicate states, the search overhead incurred by
sequential IDA* by exploring duplicate states is enormous,
and therefore, a massive, distributed transposition table re-
sults in search efficiency improvements which make up for
any overheads incurred by parallelization. In contrast, for
parallel A* algorithms, increasing the amount of aggregate
RAM affects whether problems can be solved or not (i.e.,
whether memory is exhausted before search completes), but
by itself, increased memory does not improve the number
of nodes explored by the search algorithm, since sequential
A™ does not reopen duplicate states. On the other hand, it is
also possible to use massive amounts of aggregate RAM in
different ways to improve performance (e.g., increasing the
size of an abstraction-based heuristic table). This remains
an area for future work.

Another area of future work is an in-depth investigation of
the scalability as the number of nodes increases. Our parallel
experiments have used clusters of multicore nodes (16 cores
per node), so even with 128 cores, this involved 8 nodes.
Since inter-node communications overhead is more signifi-
cant than intra-node communications within a single node,
further investigation is needed to understand the impact of
inter-node communications on the scalability of HDA*.

Finally, we note that the serial computation of the abstrac-
tion heuristic table (Helmert, Haslum, and Hoffmann 2007)
results in a serial bottleneck, as illustrated in our results. We
are currently parallelizing an abstraction algorithm.

Acknowledgements

This research is supported by the JSPS Compview GCOE,
the Japan MEXT program, “Promotion of Env. Improve-
ment for Independence of Young Researchers”, and the JST
PRESTO. NICTA is funded by the Australian government’s
Backing Australia’s Ability initiative.

References

Béckstrom, C., and Nebel, B. 1995. Complexity Results for
SAS™ Planning. Computational Intelligence 11(4):625-655.

Botea, A.; Enzenberger, M.; Miiller, M.; and Schaeffer, J. 2005.
Macro-FF: Improving Al Planning with Automatically Learned
Macro-Operators. Journal of Artificial Intelligence Research
24:581-621.

Burns, E.; Lemons, S.; Zhou, R.; and Ruml, W. 2009. Best-
First Heuristic Search for Multi-Core Machines. In Proceedings
of IJCAL

Edelkamp, S., and Jabbar, S. 2006. Cost-optimal external plan-
ning. In Proceedings of AAAI, 821-826.

Edelkamp, S. 2001. Planning with Pattern Databases. In Pro-
ceedings of European Conference on Planning, 13-34.

Evett, M.; Hendler, J.; Mahanti, A.; and Nau, D. 1995. PRA*:
Massively parallel heuristic search. Journal of Parallel and Dis-
tributed Computing 25(2):133-143.

Feldmann, R. 1993. Spielbaumsuche auf Massiv Parallelen Syste-
men. Ph.D. Dissertation, University of Paderborn. English trans-
lation titled Game Tree Search on Massively Parallel Systems is
available.

Frigo, M.; Leiserson, C. E.; and Randall, K. H. 1998. The Imple-
mentation of the Cilk-5 Multithreaded Language. In ACM SIG-
PLAN Conferences on Programming Language Design and Im-
plementation (PLDI’98), 212-223.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. [EEE
Trans. on Systems Science and Cybernetics 4(2):100-107.

Haslum, P., and Geffner, H. 2000. Admissible Heuristics for
Optimal Planning. In Proc. Fifth International Conference on Al
Planning and Scheduling, 140-149.

Helmert, M., and Roger, G. 2008. How Good Is Almost Perfect?
In Proceedings of AAAI-08, 944-949.

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Ab-
straction Heuristics for Optimal Sequential Planning. In Proceed-
ings of ICAPS-07, 176-183.

Kishimoto, A., and Schaeffer, J. 2002. Distributed Game-Tree
Search Using Transposition Table Driven Work Scheduling. In
Proceedings of the 31st International Conference on Parallel Pro-
cessing ICPP-02, 323-330.

Korf, R. E., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. In Proceedings of
AAAI-2000, 910-916.

Korf, R. 1985. Depth-first Iterative Deepening: An Optimal Ad-
missible Tree Search. Artificial Intelligence 97:97-109.

Kumar, V.; Ramesh, K.; and Rao, V. N. 1988. Parallel best-first
search of state-space graphs: A summary of results. In Proceed-
ings of AAAI-8S, 122-127.

Lin, C., and Snyder, L. 2009. Principles of Parallel Program-
ming. Addison—Wesley.

Mattern, F. 1987. Algorithms for distributed termination detec-
tion. Distributed Computing 2(3):161-175.

Rao, V. N., and Kumar, V. 1987. Parallel depth-first search on
multiprocessors part I: Implementation. International Journal of
Parallel Programming 16(6):479-499.

Romein, J. W., and Bal, H. E. 2003. Solving awari with parallel
retrograde analysis. IEEE Computer 36(10):26-33.

Romein, J. W.; Plaat, A.; Bal, H. E.; and Schaeffer, J. 1999.
Transposition Table Driven Work Scheduling in Distributed
Search. In Proceedings of AAAI-99, 725-731.

Romein, J. W.; Bal, H. E.; Schaeffer, J.; and Plaat, A. 2002. A
performance analysis of transposition-table-driven work schedul-
ing in distributed search. IEEE Transactions on Parallel and Dis-
tributed Systems 13(5):447-459.

Snir, M., and Gropp, W. 1998. MPI: The Complete Reference.
MIT Press.

Zhou, R., and Hansen, E. 2004. Structured Duplicate Detection
in External-Memory Graph Search. In Proceedings of AAAI-04,
683-689.

Zhou, R., and Hansen, E. 2006. Domain-independent structured
duplicate detection. In Proc. AAAI-06, 683—688.

Zhou, R., and Hansen, E. 2007. Parallel Structured Duplicate
Detection. In Proceedings of AAAI-07, 1217-1223.

Zobrist, A. L. 1970. A new hashing method with applications for
game playing. Technical report, Dept of CS, Univ. of Wisconsin,
Madison. Reprinted in International Computer Chess Association
Journal, 13(2):169-173, 1990.

